IS this is MGT101 (Financial Accounting)????? I dont think so..!!
Assignment 3View more random threads:
- SOC101 Introduction to Sociology Assignment No.2 Solution...
- MGT503 Principles of Management Assignment 1 May 17,2010
- MGT603 Strategic Management Assignment No. 01 Fall 2014...
- CS615 Software Project Management Idea Solution Assigment#1...
- CS710 Mobile and Pervasive Computing Assignment No. 2...
- SOC401 Cultural Anthropology Assignment No.1 Solution...
- MGT603 Strategic Management Assignment No. 2 Fall Semester...
- CS507 Information System Assignment No. 01 Solution Fall...
- CS506 Web Design and Development Assignment 1 Fall semester...
- MGT402 Assignment No1 Idea Solution Fall October 2010
mgt101 assignment 3 vuhelp.jpg
Sponsored Links
Last edited by viki; 07-03-2010 at 08:24 AM.
:o:o--------------------------------------------------------------------------------------:o:o
[B]The more knowledge you have, the greater will be your fear of Allah.[/B]
Please Join My [B]Group Vuhelp[/B][B], Birthday Wishing, Daily Hadees[/B] [CODE][B]http://vuhelp.net/groups/vuhelp.html[/B]
[B]http://vuhelp.net/groups/birthday-wishing.html[/B]
[B]http://vuhelp.net/groups/daily-hadees.html[/B][/CODE]
[CENTER][B][COLOR="Red"][SIZE="4"]Email: [email]viki@vuhelp.net[/email][/SIZE][/COLOR][/B][/CENTER]
IS this is MGT101 (Financial Accounting)????? I dont think so..!!
its MTH 101 assignment # 3
:o:o--------------------------------------------------------------------------------------:o:o
[B]The more knowledge you have, the greater will be your fear of Allah.[/B]
Please Join My [B]Group Vuhelp[/B][B], Birthday Wishing, Daily Hadees[/B] [CODE][B]http://vuhelp.net/groups/vuhelp.html[/B]
[B]http://vuhelp.net/groups/birthday-wishing.html[/B]
[B]http://vuhelp.net/groups/daily-hadees.html[/B][/CODE]
[CENTER][B][COLOR="Red"][SIZE="4"]Email: [email]viki@vuhelp.net[/email][/SIZE][/COLOR][/B][/CENTER]
where is solution of mth101 assignment no 3 please Help
Brother is ka solution hay tu post karo please
:o:o--------------------------------------------------------------------------------------:o:o
[B]The more knowledge you have, the greater will be your fear of Allah.[/B]
Please Join My [B]Group Vuhelp[/B][B], Birthday Wishing, Daily Hadees[/B] [CODE][B]http://vuhelp.net/groups/vuhelp.html[/B]
[B]http://vuhelp.net/groups/birthday-wishing.html[/B]
[B]http://vuhelp.net/groups/daily-hadees.html[/B][/CODE]
[CENTER][B][COLOR="Red"][SIZE="4"]Email: [email]viki@vuhelp.net[/email][/SIZE][/COLOR][/B][/CENTER]
Best Answer – Q1
y = x^2+k\x = x^2 + kx^(-1)
Max/min points are found when the gradient = 0
Find the gradient:
dy/dx = 2x - kx^(-2)
2x - kx^(-2) = 0
Taking LCM
2x^3 - k =0
2x^3 = k
If x=3:
k = 2(3)^3 = 2(27) = 54
k = 54
Q2
f'(x) = 1 - 1/x^2 > or = 0 in [1, +oo]
So, f(x) is increasing.
fmin = f(1) = 1 + 1/1 = 2
x + 1/x > fmin = 2
f'(x) = 1 - 1/x^2 = (x^2 - 1)/x^2.
Then, if f(x) is increasing, then f'(x) > 0 and so:
(x^2 - 1)/x^2 > 0.
Then, since x^2 is positive for all x, we have:
x^2 - 1 > 0
==> x < -1 and x > 1.
Thus, f(x) is increasing for (1, infinity).
For the second part, since f(x) is increasing for x > 1:
x > 1 <==> f(x) > f(1).
Since f(1) = 1 + 1/1 = 2, we see that for x > 1:
f(x) > 1 + 1/1 = 2. ∴
I hope this helps!
Last edited by viki; 07-07-2010 at 02:42 PM.
There are currently 1 users browsing this thread. (0 members and 1 guests)